Rescue A Rules (2010)

Last Updated: Tuesday 15th December 2009

TC Rescue 2010:
Damien Kee – Australia (chair)
Tiago Docilio Caldeira – Portugal
Carlos Cardeira – Portugal
Ashley Green – United Kingdom
Katsunori Mizuno – Japan
Kate Sim – United Kingdom

Changes from 2009 rules are highlighted in red.

1. Arena.
1.1. Description:
1.1.1. The arena is modular. Each module can be thought of as a "room" in a building. Modules may be placed adjacent to each other (on the same level horizontally) or may be stacked vertically. Modules on the same level are connected by level hallways. Modules on different levels are connected by a sloping hallway or ramp. A ramp will not exceed an incline of 25 degrees from the horizontal, and must have walls at least 10 cm high. Building plans (Suggested Building Instructions) are linked here:
1.2. Dimensions:
1.2.1. Each module is approximately 1200mm by 900mm (47 inches by 36 inches), with walls that are approximately 30 cm (12 inches) high.
1.2.2. Each room will have two doorways in standard locations (see building plans). Robots will enter through one doorway and exit through the other. Doorways will be 250mm x 250mm in size.

1.3. Floor:
1.3.1. The floor of each room will be a light colour (white, or close to white). The floor may be either smooth or textured (like linoleum or carpet), and may have steps of up to 3 mm in height at joins between modules.
1.3.2. The arena should be placed so that the floors are level.

1.4. Line:
1.4.1. On the floor, there will be a black line for the robots to follow, composed of 300mm x 300mm tiles. The black line may be made with standard electrical (insulating) tape, 1 - 2 cm wide or printed onto paper or other material. The black line traces a maze on the floor. (The gridlines indicated in the drawings are for reference only, and will not physically be on the arena)
1.4.2. Where the black line is used, it will enter and exit each room through the standard doorways. Any straight section of the black line running alongside a wall (in a room or on a ramp) may have gaps of up to 20 cm in it.
1.4.3. The arrangement of the tiles within each room may vary between different rounds.
1.4.4. Due to the nature of the tiles, there may be steps or gaps of up to 3mm between each tile. These are not intentional and will minimised when possible by the organisers.

1.5. Debris:
1.5.1. Debris may be located anywhere in the arena (but NOT in hallways or on the ramp). Debris may take the form of obstacles to be avoided, speed bumps that should be driven over, or smaller objects that could be driven over or pushed aside.
1.5.2. Debris may consist of bricks, blocks, weights, speed bumps (made from 10 mm plastic pipe or wooden dowel painted white), or wooden sticks less than 3 mm in diameter (e.g. cocktail sticks or kebab skewers).

1.6. Zones:
1.6.1. The black line may end at the entrance to the last room (the "Red Zone") or the bottom of the ramp, so that robots are required to utilise some form of search strategy to
locate the victim and the exit and finishing line in the last room. The Victim may be located anywhere on the floor of the Red Zone, but must be at least 10 cm from the nearest wall.

1.6.2 At the entrance to the Red Zone, there will be a 25mm x 250mm strip of reflective silver tape on the floor.
1.6.3 An 'Evacuation Point' tile will be used within one corner of the Red Zone. It will take the form of a rightangled triangle, with sides of 300mm x 300mm and a black floor.
1.6.4 For the Secondary competition, the 'Evacuation Point' tile will consist of a Rightangled triangle, sides of 300mm x 300mm and a height of 60mm, painted black.
1.6.5 The Red Zone will have an entrance door only. The mission will be considered complete once the victim is successfully moved to the evacuation area

1.7. Victims:
1.7.1. A Victim will be placed in the Red Zone
1.7.2. Victims will take the form of a regular 375ml softdrink can, internally weighted to 150g
1.7.3. Victims will be covered in aluminium foil

1.8. Lighting and magnetic conditions:
1.8.1. Teams must come prepared to calibrate their robots based on the lighting conditions at the venue.
1.8.2. Lighting conditions may vary along the course in the rescue arena.
1.8.3. Every effort will be made by the organizers to locate the rescue arena away from magnetic fields such as underfloor wiring and metallic objects. However, sometimes this cannot be avoided.

Hint: It is recommended that teams design their robots to cope with variations in lighting and magnetic conditions, as these vary from venue to venue. Teams should come prepared to calibrate their robots based on the conditions at the venue.

2. Robot.
2.1. Control:
2.1.1. Robots must be controlled autonomously.
2.1.2. Robots must be started manually by humans.
2.1.3. The use of a remote control to manually control the robot is not allowed.
2.1.4. BlueTooth Class 2 communication between robots on the same field is permitted. No other form of radio communication is allowed. Robots that have radio communications on board, whether they are used during the duration of the competition or not, will be immediately disqualified.
2.2. Construction:
2.2.1. Any robot kit or building blocks, either available on the market or built from raw hardware, may be used, as long as the robot fits the above specifications and as long as the design and construction are primarily and substantially the original work of the students (see section 2.5. below).
2.2.2. Any commercially produced robot kits that are specifically marketed as 'line followers' or 'rescue' robots will likely to be disqualified unless *significant* modifications to both the mechanical design and provided software. If there is any doubt as to the legitimacy of a particular commercial product, participants must contact the International RoboCupJunior Rescue Technical Committee several months prior to any competition to confirm. Organisers will treat all inquiries with the utmost privacy, and will not release details to any 3rd parties.

2.3. Team:
2.3.1. In each round, a single robot is deployed which must perform its tasks autonomously. (In certain international competitions, this rule can be modified such that two or more robots are deployed together and have to cooperate in fulfilling the task. Check the bylaws for the competition.)

2.4. Inspection:
2.4.1. The robots will be examined by a panel of referees before the start of the tournament and at other times during the competition to ensure that they meet the constraints described above.
2.4.2. It is the responsibility of teams to have their robots re-inspected if their robots are modified at any time during the tournament.
2.4.3. Students will be asked to explain the operation of their robot in order to verify that the construction and programming of the robot are their own work.
2.4.4. Students will be asked questions about their preparation efforts, and may be requested to answer surveys and participate in video-taped interviews for research purposes.

2.5. Violations:
2.5.1. Any violations of the inspection rules will prevent that robot competing until modifications are effected.
2.5.2. However, modifications must be made within the time schedule of the tournament and teams must not delay tournament play while making modifications.
2.5.3. If a robot fails to meet all specifications (even with modification), it will be disqualified from that round (but not from the tournament).

2.5.4. If there is excessive mentor assistance or the work on the robots is not substantially original work by the students, then the team will be disqualified from the tournament.

3. Play.

3.1. Pre-round setup:

3.1.1. Where possible, competitors will have access to practice arenas for calibration, testing and tuning throughout the competition.

3.1.2. Organizers will make every effort to allow 2 minutes of setup time on the competition arenas for each team before each of their rounds.

Hint: Participants should be aware, however, that situations may arise where these conditions cannot be met; and so participants should arrive prepared to cope with conditions that are less than ideal.

3.1.3. Where there are dedicated 'competition' and 'practice' fields, it will be at the organisers discretion if testing is allowed on the competition fields.

3.2. Length of round:

3.2.1. Robots will be given a maximum time of 8 minutes to complete the course. The time for each round will be kept by the referee.

3.3. Start of play:

3.3.1. To begin, the robot is placed on the starting tile in the first room as indicated by the referee.

3.3.2. Teams that are late for their starting time will forfeit the round. Start times will be posted prominently around the venue.

3.4. Humans:

3.4.1. In general, movement of robots by humans is not acceptable.

3.4.2. Humans can move robots only when told to do so by the referee.

3.4.3. Before the start of each round, teams should designate one human who will act as "captain", and be allowed to move the robot, based on the stated rules and as directed by the referee.

3.4.4. Other team members (and any spectators) within the vicinity of the rescue arena are to stand at least 150 cm (approximately 60 inches) away from the arena while their robot is active, unless otherwise directed by the referee.

3.5. Scoring:
3.5.1. The robot must attempt to follow the black line where it is present.
3.5.2. Robots are rewarded 10 points for successfully negotiating each gap in the black line.
3.5.3. Robots are rewarded 10 points for successfully avoiding each large item of debris blocking the black line.
3.5.4. Robots are rewarded 5 points for successfully completing a tile that has one or many speed bumps on the black line.
3.5.5. Robots are rewarded 50 points for successfully entering a room through one doorway and exiting through the other doorway without incurring a touch penalty. Robots that do incur the touch penalty may restart that particular room (see rule 3.6.3) and still be eligible for the room completion points.
3.5.6. Robots are rewarded 20 points for successfully negotiating a ramp without any assistance.
3.5.7. Robots are penalized 15 points for each lack of progress (see section 3.6 below).
3.5.8 Robots are awarded 50 points for a successful 'Rescue'
 - Primary - A rescue is completed when the victim is moved completely within the evacuation zone.
 - Secondary - A rescue is completed when the victim is lifted and released on the evacuation platform.
3.5.9. Ties in scoring will be resolved on the basis of the time taken by each robot (or team of robots) to complete the course.

3.6. Lack of Progress:
3.6.1. Lack of progress occurs if the robot is stuck in the same place or loses the black line for more than 20 seconds.
3.6.2. If a robot loses the line or fails to appropriately negotiate a piece of debris it must be returned to the start of the room (and in the process incur a 15 point touch penalty). If after the third attempt at a room, there is a lack of progress, the team captain can choose to move the robot to the end of the room to continue on.
3.6.3. A team may elect to stop the round early if the lack of progress is caused by a faulty robot. In this case, the team captain must indicate to the referee the team's desire to terminate. The team will be awarded all points achieved thus far.

4. Conflict resolution.
4.1. Referee:
4.1.1. During game play, the referee's decisions are final.
4.2. Rule clarification:
4.2.1. Rule clarification may be made by members of the International RoboCupJunior Rescue Technical Committee.

4.3. **Special circumstances:**
4.3.1. Specific modifications to the rules to allow for special circumstances, such as unforeseen problems and/or capabilities of a team's robot, may be agreed to at the time of the tournament, provided a majority of the contestants agree.

5. **Documentation.**
5.1. **Reporting:**
5.1.1. Each team must bring an electronic presentation (e.g., in PowerPoint, PDF or Flash format) and a poster (approximately A3 size) documenting the design, construction and programming of their robot.
5.1.2. Presentations and/or posters are to be shown to the judges during the scheduled interview session before being put up for viewing by the judges, other teams and the visiting members of the public.
5.1.3. The presentation should provide information about the team and how they prepared for RoboCupJunior. Areas that could be covered include:
 5.1.3.1. Team name;
 5.1.3.2. Division (primary or secondary);
 5.1.3.3. Team members' names and (perhaps) a picture of the team members;
 5.1.3.4. Team's country and location within country;
 5.1.3.5. Team's school and district;
 5.1.3.6. Pictures of the robot under development;
 5.1.3.7. Information about the robot, including schematics, mechanical drawings and samples of code;
 5.1.3.8. Any interesting or unusual features of the robot;
 5.1.3.9. What the team hopes to achieve in robotics.
5.1.4. Judges will review the presentation and discuss the contents with team members.
5.1.5. Competitors are requested to provide digital versions of their presentation and poster.
5.1.6. Prizes may be awarded to teams with outstanding presentations.

5.2. **Sharing:**
5.2.1. Teams are encouraged to view one another's posters and presentations.

6. **Code of Conduct.**
6.1. Fair Play:
6.1.1. Robots that cause deliberate or repeated damage to the arena will be disqualified.
6.1.2. Humans that cause deliberate interference with robots or damage to the arena will be disqualified.
6.1.3. It is expected that the aim of all teams is to participate fairly.

6.2. Behaviour:
6.2.1. Participants should be mindful of other people and their robots when moving around the tournament venue.
6.2.2. Participants are not to enter setup areas of other leagues or other teams, unless expressly invited to do so by team members.
6.2.3. Participants who misbehave may be asked to leave the building and risk being disqualified from the tournament.
6.2.4. These rules will be enforced at the discretion of the referees, officials, tournament organizers and local law enforcement authorities.

6.3. Mentors:
6.3.1. Mentors (teachers, parents, chaperones and other adult team members) are not allowed in the student work area.
6.3.2. Sufficient seating will be supplied for mentors to remain in a supervisory capacity around the student work area.
6.3.3. Mentors are not to repair robots or be involved in programming of students' robots.
6.3.4. Mentor interference with robots or referee decisions will result in a warning in the first instance. If this recurs, the team will risk being disqualified.

6.4. Sharing:
6.4.1. An understanding that has been a part of world RoboCup competitions is that any technological and curricular developments should be shared with other participants after the tournament.
6.4.2. Any developments may be published on the RoboCupJunior website after the event.
6.4.3. This furthers the mission of RoboCupJunior as an educational initiative.

6.5. Spirit:
6.5.1. It is expected that all participants (students and mentors alike) will respect the RoboCupJunior mission.
6.5.2. The referees and officials will act within the spirit of the event.
6.5.3. It is not whether you win or lose, but how much you learn that counts!