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Abstract. Computer Vision is a field applicable to many applications
in modern life. But how does one balance the demands of high speed
performance while deploying to hardware which potentially needs to be
very small in size and cheap in construction? In the process of solving
the tasks presented by the RoboCupJunior Rescue Maze Competition,
we combined the use of a costume designed vision apparatus to minimize
the space needed along with a specialized original algorithm capable of
running on low performance machines, allowing for the deployment of
letter detection algorithms on a very small and compact robot.

1 Introduction

The field of Computer Vision has, in these few years, permeated the forefront
of modern research. Such has also been reflected in the increasing importance of
Computer Vision in Robotics, and as a result many high school level competitions
have began incorporating the usage of the field in their tasks. This presentation
is about the usage of Computer Vision in the RoboCupJunior Rescue Maze
Competiton.

1.1 The Task

The task presented by the RoboCupJunior competition involved the detection
and interpretation of letters. Specifically, a robot must distinguish the letters,
with unfixed font, ”H”, ”S”, and ”U” autonomously. Furthermore, since the
competition involved rather small autonomous vehicles, the processing power is
rather limited. Thus, the challenge is not only to devise an algorithm to interpret
these letters, but also to make an algorithm extremely efficient in its usage of
processing power and very robust and adaptable in its ability to distinguish
characters that may not be the same as what one may expect.

2 Hardware Design

Due to the limited space available on these vehicles, it is desirable to utilize as
few cameras as possible. When using common single board computers (SBCs)
like the Raspberry Pi Zero, one SBC can typically only support one camera, and
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there is very limited space available for these SBCs. However, the robot needs
to be able to detect letters on both sides of itself while passing walls, or else
the robot would have to make multiple passes to scan both sides. To save space
and time, a split mirror is used to allow one camera to view both sides of the
robot at the same time. A configuration consisting of a camera pointing up to
two mirrors, each occupying half of the camera’s field of view and reflecting in
opposite directions, is used (see Fig. 1). It is constructed out of a 3D printed
frame for accuracy and design flexibility, and utilizes plastic reflective elements
for ease of construction, reduced weight, and safety.

Fig. 1: Mirror design for viewing both sides of robot with one camera

3 Image Processing Algorithm

The interpretation of a live image feed utilized the power of OpenCV, an open
source computer vision library. This library contains a myriad of functions to
analyze and transform the image, which when used in conjunction can yield
algorithms to do tasks such as the one presented. This presentation focuses on
the usage of basic functions in the OpenCV library in efficiently determining the
letter seen by the camera.

3.1 Preprocessing

The first part of interpreting the image is preprocessing. The goal of this stage
is to reduce the possible sources of error and noise. The first step is resizing the
image to a much lower resolution. A letter is clearly identifiable even at a very low
resolution. Downscaling is able not only to reduce any noise, such as unwanted
background imagery, but more importantly also allows further processing to be
much quicker. Second, the image is thresholded—converted so each pixel is either
black or white, and then inverted. Since the letter is meant to be black on a white
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background, thresholding makes the image clearer and easier to work with while
not changing anything meaningful about the image.

(a) Unprocessed camera feed (scaled by .5x)

(b) Downscaled
camera feed

(c) Thresholded
and inverted cam-
era feed

Fig. 2: Unprocessed and processed camera feed comparison

3.2 Extracting Regions of Interest

The first step in identifying the letter is to reliably extract the specific region
of interest, i.e. a bounding rectangle around the letter. The first step is to find
the contours in the image (through OpenCV’s findContour function), and from
there find the bounding rectangles of the contours. However, contours detected
are not always letters. In fact, they may be imagery that the camera sees over
the walls or past the mirror (lights and such, see top of Fig. 1). Furthermore, one
might find a letter, but it may happen that this letter is actually in an adjacent
tile. Thus, the extraction of regions of interest must be robust enough to reject
these sources of error.

Error Rejection There were a number of criteria that was required for a
bounding rectangle to pass error rejection. The first was the distance of the
bounding rectangle from the edge. A letter that is touching the edge of the
image is likely also to be partially cut off , making it incomplete and thus not fit
to be analyzed. The second is the size of the bounding rectangle. The bounding
rectangle must be large enough that one can confidentially say it is on the tile
right besides the robot. Third, the contour must be of a specific aspect ratio. This
is probably the most rigorous of the three criteria, as most common contours
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would be shaped as long, thin stretches, as opposed to letters which are more
close to a square (depending on the font). These three steps are able to yield a
confident prediction of whether or not the region of interest is a letter.

(a) Ex. 1–no misidentified regions (b) Ex. 2–successfully identified letter

Fig. 3: Regions of Interests Extracted from Image. Red: Rejected by first error
rejection (§ 3.2). Blue: Identified as a possible letter but rejected due to contours
not matching (§ 3.3). Green: Identified letter (§ 3.3).

3.3 Interpretation

’Finally, after extracting the regions of interest, it is finally time to determine ex-
actly what letter we are looking at. To do this, there are two different approaches
that were tried.

Contour Analysis This was the initial, and currently deployed approach. This
method is hinged upon the fact that letters that must be distinguished are of
a very limited scope. The 3 letters, ”H”, ”S”, and ”U” are very clearly distin-
guishable. Thus, this solution was very specific in scope, which means it cannot
quite be generalized to a whole alphabet, but it is very consistent for the given
letters and is very processing efficient. The method works like such: the four
sides of each letter had either one or two contiguous regions (e.g. ”H” has 2
on the top and bottom and 1 on each side). The specific combination of how
many contiguous regions exist on each side of the letter is distinct between the
3 letters. Thus by counting the number of contours on each side of the image,
one can figure out whether it is a ”H”, ”S”, or ”U”.

This method is advantageous for two reasons. One, the general shape of a
letter doesn’t change even if one were to change the font or distort the image
in some way. This increases the robustness of the algorithm. Second, the very
specific combination of the number of contours on each side serves as a very
rigorous gate for potentially misidentified regions of interest that may have made
it through the initial error rejection process.
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(a) H Contours (b) S Contours (c) U Contours

Fig. 4: Contours of each side of ”H”, ”S”, and ”U”

K-Nearest Neighbors A second method that we investigated is the usage of
the K-Nearest Neighbor (KNN) algorithm. As a brief overview, KNN operates
through the comparison of a given data set and the trained data set. The trained
data points with the closest Euclidean distance to the current data are the
”neighbors”, and thus the letter in which closest neighbors are is determined to
be the letter of the given data set [3]. The Euclidean distance can then be used
to judge how close of a fit the data set is to the trained set, being able to reject
regions of interest that mistakenly got past error rejection. Our implementation
of the KNN algorithm used each individual pixel from a resized version of the
bounding rectangle found earlier.

Comparison The usage of KNN has its advantages compared to the first
method, however we determined it to be ultimately worse. The primary ad-
vantage is that it can be generalized to many letters, as long as the training set
was expanded. This advantage however, made very little difference in the scope
of its usage in which only 3 letters needed to be determined. The drawbacks
however, were much more influential on the competition. Our KNN algorithm
was significantly less consistent than the contour analysis algorithm. Since we
used a data set of all the pixels in a given region, this method was more sensitive
to minor differences in the image such as distortion, lighting, or font type. This
led it it being far less adaptable and thus accurate than the contour analysis
method. On average, given a stable test environment and the same font as the
training data, the two algorithms had a very similar accuracy rate of over 95%.
However, anecdotally (since the data is not immediately available) with different
fonts, (still sans serif, though some more unconventional) the contour method
performed more consistently, and also performed consistently across redesigned
iterations of the camera module and mirror, while the KNN algorithm likely
would not weather such deviations from its dataset.
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3.4 Performance

The ultimate goal was to have the software running on a very small SBC such as
the Pi Zero (later we did upgrade the platform, but not due to issues in perfor-
mance of the core algorithm). Such a computer has relatively limited processing
capabilities (single core at 1GHz). With the aforementioned contour analysis
algorithm, we were able analyze at 30fps in real-time, which maxed out the
framerate of the camera. Thus this specialized algorithm, which through the us-
age of in general only basic OpenCV functionality, ran both consistently and on
a system which was low performance, cheap, and compact.

4 Deployment

The vision system is designed to run on a Linux SBC, and often when deploying
such projects, managing dependencies becomes an issue. To alleviate this issue,
we utilized Docker [4] to build containers, which bundle all runtime dependencies
(essentially the filesystem of a stripped-down Linux installation) and are entirely
portable. A Docker-based workflow also allows running these containers—built
for ARM—to run on x86 based machines with QEMU, enabling testing on x86
laptops or desktops exactly as it would run on the real robot hardware. Build-
ing these containers can also be done with x86 hardware, including continuous
integration servers in the cloud such as Gitlab CI [1]. Thus long builds such as
OpenCV need not be performed on the limited-performance SBC itself. These
base images are publicly available on our GitLab page [2].

5 Conclusion

All in all, by combining the usage of hardware and software designed with the
task in mind, one has the potential to create a product both efficient in space and
sufficiently fast in performance. In the case of our experience in RoboCupJunior,
our original solutions allowed us to create an extremely compact implementation
of a normally fairly intensive process—letter recognition. Such can be applied
to any project in that one must consider deeply what the individual nuance of
one’s project is and how a solution can be developed around it, instead of simply
taking a more off-the-shelf solution.
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