
Unlocking the Potential of Your Microcontroller

Ethan Wu

Storming Robots, Branchburg NJ, USA

Abstract. Many useful hardware features of advanced microcontrollers
are often not utilized to their fullest potential in RoboCup Junior (RCJ),
requiring workarounds such as multiple microcontrollers in a single robot.
By allowing microcontroller hardware to handle most robot components,
including sampling sensors, driving motors, and sending or receiving
other data, the microcontroller’s core is able to focus on other tasks
such as compute-intensive processing and algorithms. This design prin-
ciple is demonstrated by an RCJ Rescue Maze robot with over a dozen
sensors controlled by a single microcontroller.

1 Introduction

Any advanced robot likely has a multitude of sensors and actuators. The mi-
crocontrollers on these robots must be able to quickly and accurately acquire,
process, and act on incoming data. However, the most commonly used micro-
controllers, members of the ATmega series (found in most Arduinos), typically
struggle with meeting these performance requirements. Many turn to more pow-
erful microcontrollers with higher clock speeds, however the additional hardware
features of these controllers are often underutilized. Typically kludges—such
as adding additional microcontrollers—are employed to satisfy feature require-
ments, resulting in much larger and more complex robots. To help the RCJ
community solve this common problem, this paper examines how to offload data
acquisition and actuator control from the core to peripheral hardware. Then,
an example is presented demonstrating how these techniques can be successfully
implemented with a robot for the Rescue Maze competition. This robot demon-
strates that a large quantity of data can be captured using peripheral hardware
while leaving most of the core available for other processing. The same strate-
gies can easily be applied to other robotics projects, including but not limited
to other divisions of RCJ.

2 Basic hardware

2.1 GPIOs

The most basic peripheral of any microcontroller is the GPIOs, or General Pur-
pose Input/Outputs; these are the digital pins. They can be directly controlled
by the core, but can also be assigned to the inputs and outputs of other peripher-
als on the microcontroller. For example, on the STM32 series of microcontrollers,



2 Ethan Wu

all non-special pins (i.e. everything except power and clock source) are GPIOs
that can be assigned to be used by other peripherals available on that pin, such
as ADCs, I2C, and even the debug port. Thus, one physical pin on the microcon-
troller package can serve many different roles, making pins with many peripherals
attached valuable for future expansion and alternative uses or applications.

2.2 Interrupts

Interrupts are one of the most basic and important concepts in an embedded
microcontroller; they have many applications. Different types of interrupts can
be triggered by various components, but they all serve to “interrupt” other hard-
ware in the microcontroller, essentially informing it that some event happened.
Arduino users are likely familiar with external interrupts—those triggered by a
digital state change on a GPIO pin. These external interrupts can trigger on a
variety of conditions, including at minimum rising and falling edge triggers [4].
They can trigger an interrupt service routine in the microcontroller’s core, which
is what is typically seen with Arduinos, but can also trigger other hardware and
peripherals inside the microcontroller.

Besides physical pins and external events, other internal peripherals inside
the microcontroller can also trigger interrupts, typically signaling an event that
occurred in the peripheral. This enables complex hardware-handled behavior
by allowing various peripherals to work together asynchronously, responding to
tasks as they need to be done.

3 Timers

One of the most basic and versatile features on a microcontroller is its timers.
They perform a very simple function—count. However, the various triggers,
counting modes, and output options are what makes them so powerful.

3.1 CCR: Input

Timers typically contain one or more capture/compare registers (CCRs). With
the CCRs in input capture mode, each CCR channel can be configured to save
the current value of the counter when an edge is detected on a GPIO pin. This
is particularly useful for capturing precise timing information without any in-
tervention from the core. This functionality can be used to capture information
about a pulse or PWM signal. Two CCRs capture each edge of a signal, giving
the pulse’s width and its period (in the case of PWM), with the counter resetting
on one of the edges.

3.2 CCR: Output

Each CCR can also generate an output by comparing its value with the current
value of the counter. This is commonly used for generating a PWM signal (and is



Unlocking the Potential of Your Microcontroller 3

how an Arudino’s hardware PWM works), with the value of the CCR specifying
the on-time and the configurable maximum value of the counter specifying the
period. It is often used for motor control.

3.3 Slave mode

The timer’s counter can also be controlled by other external factors in what
is termed slave mode. A timer can be set to reset, count, or switch counting
direction depending on other events (from outside the microcontroller or from
another timer) [3]. One important function this enables is encoder mode, where
the timer’s slave mode controller handles counting up or down depending on the
quadrature encoder input. Because this is controlled by hardware, it is virtu-
ally impossible for the timer to skip encoder counts, and also does not require
interrupting the core (with the possibility of miscounting) like an encoder im-
plementation with external interrupts [1].

4 Peripheral features

4.1 ADC

Almost all microcontroller contain at least one analog-to-digital converter (ADC).
More advanced microcontrollers also have additional features on ADCs such as
analog watchdogs, which will generate an interrupt when a certain channel’s
value goes outside of a predefined range. ADCs can also include various sam-
pling modes and sampling controls. The most basic of these is the sample rate;
higher rates can be achieved by using fewer bits of precision. Many ADCs can
also set up sampling sequences, allowing multiple channels to be sampled with
their own sampling times, and the sampling order to be customized. For exam-
ple, if a channel needs to be sampled more frequently than the others, it could
occupy more sampling slots in the ADC’s scan sequence; if a channel needed
additional accuracy, it could have a longer sampling time.

4.2 Serial protocols

Microcontrollers contain various hardware peripherals for common serial proto-
cols, such as I2C, SPI, USART (which supports both UART or standard “serial”
and more obscure synchronous protocols), and CAN. These peripherals are likely
familiar to Arduino users and handle transmitting data over the protocol. The
peripheral typically transmits or receives one word (usually byte) at a time, while
handling protocol-level logic such as flow-control in UART and clock lines for
I2C and SPI. They will fire interrupts when the transmit register is done trans-
mitting for the next word to be loaded into the register. Similarly, incoming data
often also triggers an interrupt for the data to be read out of the receive regis-
ter before the next word is received. However, both these reading and writing
processes can be streamlined with DMA which is discussed next.



4 Ethan Wu

5 DMA

Many microcontrollers also possess Direct Memory Access peripherals, which
copy memory from one region to another. This is typically used to move data
between a peripheral and main memory, and is particularly useful for “queuing”
up data to a peripheral that can only accept one word at a time. Each DMA
consists of streams which will transfer between specific regions when an interrupt
is fired. Most peripherals are able to trigger DMA requests when appropriate.

The DMA channels can be configured to automate many “long” tasks that
would typically involve the core repeatedly writing or reading data. An ADC
can read all of its input channels into main memory without core involvement
by configuring DMA to cycle through memory addresses. Thus any necessary
ADC values can be updated independently in the background. Communications
over serial ports (UART, I2C, SPI, etc.) can also be streamlined with DMA,
because the DMA can take care of sequentially “feeding” words to the peripheral
from a memory buffer. The DMA request is fired after each word is transmitted,
then DMA copies the next word from memory to the transmit register. The core
simply needs to start this request without further involvement in transmission,
making this operation completely asynchronous and handled by hardware.

6 Example robot

6.1 Design

For the RCJ Rescue Maze competition, a compact robot was designed around
a single microcontroller (STM32F405) to power all decision-making, data ac-
quisition, and system control other than its vision system (see Fig. 1 for an
architectural overview). In the planning phase, microcontroller hardware was
carefully allocated between sensors of various types using the features discussed
above.

Motor PWM control was driven by a timer, like the hardware PWM output
of Arduinos.

Analog sensors, such as a reflectivity sensor and analog Sharp distance sen-
sors, were connected to ADCs in continuous mode, with readings transferred
into a buffer in main memory by DMA. Because the entire process is handled by
hardware, adding additional sensors has minimal impact on overall microcon-
troller performance; the robot was designed with six of these distance sensors to
facilitate accurate navigation.

Two Melexis temperature sensors were configured to output using PWM,
which could then be read by a timer. Thus acquiring temperature readings was
done independently for multiple sensors entirely utilizing microcontroller hard-
ware, without needing to poll over I2C or SPI.

An ultrasonic sensor was used with a timer in pulse capture mode to capture
the length of time for which the echo signal was high. This allowed for highly
accurate time (i.e. distance) measurement without needing to interrupt the core.



Unlocking the Potential of Your Microcontroller 5

DMA Controller

M
em

ory B
us

Encoders x2 Encoder mode x2

Pulse Capture x2
Temperature 
Sensors x2

Pulse CaptureUltrasonic Sensor 
x1

PWM Generation 
x2Motors x3

Tim
ers

SRAM

Core

ADC

IR Rangefinder x6

Reflectance 
Sensor x1

IMU I2C

Fig. 1. An RCJ Rescue Maze robot architecture utilizing hardware peripherals of a
microcontroller

Quadrature encoders were also managed by timers, providing accuracy at
high speeds without constant core interrupts as would be typical on an Arduino.
The timer hardware can easily handle a high rate of encoder counts (up to
84 MHz in the STM32F405 [2]) because it is implemented entirely in circuitry.
Thus it is particularly useful in high speed, high precision applications.

Since the current values of these sensor inputs could be read by a simple
memory access to the register of a timer or the memory buffer copied to by
DMA, data acquisition code running in the core can be very simple and efficient.

The only sensor that could not be handled entirely by hardware was the
I2C-based IMU, which required periodic polling over the bus and sensor fusion
processing by the core. However, this could still be optimized by utilizing DMA
in I2C transactions to perform the register reads asynchronously, allowing the
core to perform other actions while the I2C bus was busy.

Using this intelligent design, most sensors were handled by hardware periph-
erals of a single microcontroller. Therefore a majority of core processing time was
dedicated to perform calculations relevant to the algorithmic task, navigating the
robot through the maze.



6 Ethan Wu

6.2 Implementation

To realize all the features previously discussed, a printed circuit board was de-
signed, fabricated, and assembled. The circuit board allowed for creating a very
compact robot, as it contained most supporting components such as the robot’s
power supply (including voltage regulators, power filtering, and battery moni-
toring), its motor driver, and certain sensors (like Hall-effect encoders and the
reflectivity sensor). As most components were located on one board, the only
wires necessary were to plug in off-board sensors, allowing the overall robot to be
small. Reliability was also greatly enhanced because there is no need for complex
communications between multiple microcontrollers.

To program the microcontroller, first a project with basic libraries (utilizing
CMSIS, the newlib standard library implementation, and ST’s HAL), early ini-
tialization code (such as microcontroller core clock and loading memory), and
linker configuration was created using GNU MCU Eclipse. Next, to initialize
all the peripherals, ST’s STM32CubeMX utility was used to graphically config-
ure the device (including peripherals and their pin assignments as well as other
clocks) and generate additional initialization code. Then, the linker configuration
was modified to allocate a section of flash memory for persistent data storage.
For loading and debugging code, a STLink debugger (hardware) was used with
OpenOCD as a GDB server to bridge the STLink to debugger frontends.

With this hardware and software system, a robot was built capable of ac-
quiring large quantities data from over a dozen senors in real-time without core
interaction while leaving plenty of time for other tasks. The end result was a
compact reliable robot utilizing a single microcontroller for most processing.

7 Conclusion

By unlocking more of the hardware capabilities of a microcontroller and choosing
sensors to suit these capabilities, one can greatly streamline data acquisition for a
robot, leaving much of the core’s processing power available for other compute-
intensive algorithms. By using this intelligent design, a compact RCJ Rescue
Maze robot was able to be powered by a single microcontroller while successfully
and reliably accomplishing its missions.

References

1. Anderson, R., Cervo, D.: Pro Arduino. Apress, Berkeley, CA (2013)
2. STMicroelectronics: ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB

Flash/192+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm.
interfaces & camera, 8 edn. (September 2016)

3. STMicroelectronics: STM32F405/415, STM32F407/417, STM32F427/437 and
STM32F429/439 advanced ArmR©-based 32-bit MCUs, 16 edn. (April 2018)

4. White, E.: Making embedded systems. O’Reilly, Beijing (2012)


	Unlocking the Potential of Your Microcontroller

